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In this paper, a generalised mathematical model is developed, which allows 
for definition in a unit manner an analytical solution of the complex problems 
of hydraulic computation for the steady state flow open channels. These 
problems include the design and operational examination for the channels 
with linear cross-section (trapezoidal, rectangular, and triangular), the 
channels with curved cross-section (semi-circular, parabolic, and semi-
elliptic), as well as the channels with flat sides and a cylindrical bottom. The 
conditions on hydraulically optimal sections for these channel-types are 
determined by the authors. The proposed model is programmed easily on 
microcomputers. Therefore, two computer programs are performed in the 
FORTRAN programming language for PC-compatible systems, with a view to 
increase the accuracy and computational efficiency. The advantages to use 
the proposed programs are explained from two numerical applications for 
different constructive variants employed in practical engineering. 
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1. Introduction 

*Among all the problems that water researchers 
and hydraulic engineers have faced, water 
conveyance is considered to be one of not only the 
inevitable but also the expensive problems. In fact, 
water conveyance is a means to meet some of the 
needs of human society, such as irrigation, municipal 
and flood control. Artificial open channels have been 
widely used for this purpose because they can be 
constructed on different topographies and soil 
conditions and also prevent the wasting of water. 

Selection of the cross-sectional shape of open 
channels is one of the primary issues of hydraulic, 
constructive, economic and operational orders. 

The comparison performed by Mateescu (1963) 
between different isoperimetric outlines of open 
channels, each the optimum of its type, shows that 
the most hydraulically efficient shape is the semi-
circle, followed closely by the parabola and the 
isosceles trapezium with side angles of 60. For the 
conveyance of a given water flow rate, the cross-
sectional area of a parabolic channel is lower than 
the hydraulically equivalent trapezoidal channel, as 
the generic parabola degree is higher. 
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The comparative study developed by Blidaru et 
al. (1996) between the parabolic and semi-elliptic 
channels concludes that the semi-elliptic cross-
section has better hydraulic characteristics than the 
parabolic section because the conveyance of the 
same liquid flow rate has a smaller area. 

As a result, it is a known that for open channels, 
modern techniques use both linear cross-sections 
(trapezoidal, rectangular, and triangular) as well as 
curved cross-sections (parabolic, semi-elliptic, and 
semi-circular) (Chaudhry, 1993). In addition, taking 
into account the construction deficiencies of 
trapezoidal channels, the industrialisation necessity 
of the hydro-amelioration and hydro-urban systems, 
and the hydraulic advantages (Chow, 1973; 
Chaudhry, 1993; Subramanya, 1998), compound 
cross-section channels with flat sides and cylindrical 
bottom were adopted in engineering practice. Design 
and operational validation of such cross-sections 
was and still is an active area of research. 

Chow (1973) and French (1994) have published 
the most hydraulically efficient section relations. 
Their objective function was minimisation of the 
flow area while the Manning’s equation was the 
constraint. Swamee and Bhatia (1972) developed 
optimal design curves for trapezoidal, rounded 
bottom and rounded corner sections. The round-
bottom triangle is an approximation of the parabola. 
Loganathan (1991) studied optimality conditions for 
a parabolic channel section. Monadjemi (1994) 
showed that the same optimal section variables can 
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be achieved by minimisation of either flow rate or 
wetted perimeter. Froehlich (1994) recommended 
simple relations optimum section variables of 
trapezoidal sections in terms of discharge. Although 
more similar researches were conducted utilising 
new optimisation techniques (Turan and Yurdusev, 
2011; Kaveh et al., 2012), the proposed models were 
not sufficiently precise in comparison with the 
benchmark solutions. 

In this paper, a general analytical model is 
developed that solves in a unitary manner the 
complex problems of hydraulic computation for 
open channels with steady state uniform flow and 
can be easily programmed and implemented on 
microcomputers. Starting with some theoretical 
aspects of optimal hydraulic computation of open-
channels, the conditions of hydraulically optimal 
sections are determined for channels with simple 
curve sections (circular, parabolic, and semi-elliptic) 
as well as for compound section channels with flat 
sides and a cylindrical bottom. To increase the 
precision and efficiency of the computations, two 
computer programs are developed in FORTRAN 
programming language for personal computer (PC)-
compatible systems. The advantages to using the 
proposed programs are highlighted by two examples 
of comparative design for different channel cross-
sections used in practical engineering. 

2. Simple channels 

2.1. Geometrical elements of the cross-section 

Geometrical elements are properties of a channel 
section that can be defined entirely by the geometry 
of the section and the depth of flow. These elements 
are very important and are used extensively in flow 
computations. 

For simple regular channel sections the geometric 
elements can be expressed mathematically in terms 
of the depth of flow and other dimensions of the 
section. For complicated sections, however, no 
simple formula can be written to express these 
elements, but curves representing the relation 
between these elements and the depth of flow can be 
prepared for use in hydraulic computations. 

 
1. Trapezoidal isosceles channel with the side slope 

1/m=tgθ (Fig. 1) has the following geometrical 
elements: 

 

 
Fig. 1: Trapezoidal channel 

 

 Surface width (B), the width of the channel section 
at water free-surface: 

 
𝐵 = 𝑏 + 2𝑚ℎ                     (1) 
 

where h is the water depth, i.e. the vertical distance 
from the lowest point of the channel section to the 
free-surface. 
 
 Area (A), the cross-sectional area of flow, normal 

to the direction of flow: 
 
𝐴 = (𝑏 + 𝑚ℎ)ℎ                     (2) 

 
 Wetted perimeter (Pu), the length of the wetted 

surface measured normal to the direction of flow: 
 
𝑃𝑢 = 𝑏 + 2ℎ√1 + 𝑚2                     (3) 

 
 Hydraulic radius (R) – the ratio of area to wetted 

perimeter: 
 

𝑅 =
𝐴

𝑃𝑢
=

(2√1+𝑚2−𝑚)ℎ2

𝑏+2ℎ√1+𝑚2
                                 (4) 

 

2. Parabolic channel in generalised form in Fig. 2 is 

represented by a parabola of  degree defined by 
equation: 

 

 
Fig. 2: Parabolic channel 

 
𝑧 = 𝑝𝑥α                                       (5) 

 

where p is a dimensionless parameter. The 
following geometrical elements are obtained: 

 
 Section width at water free-surface: 

 
𝐵 = 2𝑥                                       (6) 

 
 Water depth: 

 
ℎ = 𝑧                                                        (7) 

 
 Geometric tangent slope in parabola intersection 

point M with water free-surface plane (side slope): 
 

1

𝑚
= tgθ =

𝑑𝑧

𝑑𝑥
                      (8) 

 
Differentiating Eq. 5 and stating point M is on the 

parabola, from Eq. 8, the following results: 
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𝑚 =
1

𝛼𝑝1 𝛼⁄ ℎ
1−𝛼

𝛼 =
2𝛼−1

𝛼𝑝
𝐵1−𝛼                     (9) 

 
 Cross-sectional area: 
 

𝐴 = 2 ∫ 𝑥(𝑧)𝑑𝑧 = 2
𝛼2𝑚

1+𝛼
ℎ2ℎ

0
                  (10) 

 
 Wetted perimeter: 

 

𝑃𝑢 = 2 ∫ √1 + (
𝑑𝑥

𝑑𝑧
)2𝑑𝑧 = 2 ∫ √1 + 𝑚2𝑑𝑧

ℎ

0

ℎ

0
                 (11) 

 
In the case that the generic parabola is of random 

form, Pu can be expressed as: 
 

𝑃𝑢 = λ√𝐴                   (12) 

 
where, the parameter =(,m) can be calculated 
with a satisfactory approximation using the 
following relations (Swamee, 1995; Sarbu and 
Kalmar, 2000): 
 
a) For 𝑚 ≥ 1 and >1: 

λ = √2(1 + α)𝑚  [1 +
1

2(2α−1)𝑚2
−

1

8(4α−3)𝑚4
]                (13) 

 

b) For m<1 and =2: 

λ = √2(1 + α)  𝑚
1+α

2(α−1) [
8α2−8.25α+1.625

(4α−3)(2α−1)
+

1

α
(𝑚

α

1−α − 1) +

1

8(3α−4)
(𝑚

4−3α

1−α − 1)]                  (14) 

 

c) For m<1 and <1 (≠2): 

λ = √2(1 + α)  𝑚
1+α

2(α−1) [
8α2−8.25α+1.625

(4α−3)(2α−1)
+

1

α
(𝑚

α

1−α −

1) −    
1

2(α−2)
(𝑚

2−α

1−α − 1) +
1

8(3α−4)
(𝑚

4−3α

1−α − 1)]              (15) 

 

 Hydraulic radius: 
 

𝑅 =
𝐴

𝑃𝑢
= √2

α

λ
  √

𝑚

1+α
  ℎ                  (16) 

 

3. Semi-elliptic channel in Fig. 3 is defined by the 
general ellipse with the following equation: 

 

 
Fig. 3: Semi-elliptic channel 

 
(𝑧−𝑎)2

𝑎2 +
𝑥2

𝑏2 − 1 = 0                                    (17) 

 

where, a is the major semi-axis; b is the small semi-
axis. The following expressions for cross-section 
elements are obtained: 
 
 Section width at water free-surface: 

 
𝐵 = 2𝑏                    (18) 

 
 Water depth: 

 
ℎ = 𝑎                    (19) 

 
 Cross-sectional area: 

 

𝐴 =
𝜋

2
𝑎𝑏 =

𝜋

4
𝐵ℎ                    (20) 

 
 Wetted perimeter (iMatematica, 2016): 

 

𝑃𝑢 = 𝜋(
3

2

𝑎+𝑏

2
−

1

2
√𝑎𝑏                             (21) 

 

 Hydraulic radius: 
 

𝑅 =
𝐴

𝑃𝑢
  

𝐵

1.5  (
𝐵

ℎ
+2)−√2

𝐵

ℎ

                  (22) 

 

The following dimensionless parameters =B/h, 
=A/h2, and f=Pu/h are defined as: 
 
for trapezoidal section: 

β =
𝑏

ℎ
                    (23) 

𝜑 = 𝛽 + 2𝑚                                                                                  (24) 
ψ = β + 𝑚                   (25) 

𝑓 = β + 2  √1 + 𝑚2                  (26) 

 
for parabolic section: 
 
𝜑 = 2𝛼𝑚                   (27) 

ψ = 2  
α2𝑚

1+α
                   (28) 

𝑓 = √2  λ  α  √
𝑚

1+α
                   (29) 

 

for semi-elliptic section: 
 

𝜑 =
𝐵

ℎ
                    (30) 

ψ =
π

4
  φ                                     (31) 

𝑓 =
π

4
[1.5  (φ + 2) − √2φ],                                   (32) 

 
Each dimensional geometrical element can be 

expressed depending on one sole dimensional 
element and two other dimensionless parameters, 
according to Table 1. 

For m=0 and =0, in Eqs. 23-26, the particular 
case of a rectangular channel and a triangular 
channel, respectively, is obtained. Substituting =2 
in Eqs. 30-32 correspond to the case of a semi-
circular channel. 

2.2. Hydraulically optimal section 

The hydraulically optimal cross-section (Arsenie 
and Arsenie, 1981) of an open channel is a section 
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that for the same area A, the same bottom slope i and 
the same roughness coefficient n, conveys the 
maximum discharge Q. Maximum discharge is 
obtained when the hydraulic radius is maximal or 
when the wetted perimeter is minimal. 

 
Table 1: Geometrical element expression of simple cross-

sections 

Elements 
A function of: 

h B A Pu R 

h h 
1

φ
𝐵 

1

ψ0,5
√𝐴 

1

𝑓
𝑃𝑢 

𝑓

ψ
𝑅 

B φℎ B 
φ

ψ0,5
√𝐴 

φ

𝑓
𝑃𝑢 

φ 𝑓

ψ
𝑅 

A ψℎ2 
ψ

φ2
𝐵2 A 

ψ

𝑓2
𝑃𝑢

2 
𝑓2

ψ
𝑅2 

Pu 𝑓ℎ 
1

φ
𝐵 

1

ψ0,5
√𝐴 Pu 

𝑓2

ψ
𝑅 

R 
ψ

𝑓
ℎ 

ψ

φ𝑓
𝐵 

ψ0,5

𝑓
√𝐴 

ψ

𝑓2
𝑃𝑢 R 

 

For the trapezoidal channel, the value b=A/hmh 
is substituted in the expression of wetted perimeter 
Pu and writing the minimum condition: 

 
d𝑃𝑢

dℎ
= −

𝐴

ℎ2
− 𝑚 + 2√1 + 𝑚2 = 0,                                  (33) 

 

is obtained: 
 

𝑏 = 2ℎ  𝑡𝑔
θ

2
                   (34) 

 

Eq. 34 shows that the hydraulically optimal cross-
section, for a given slope, corresponds to: 

 

βo =
𝑏

ℎ
= 2 𝑡𝑔

θ

2
                   (35) 

 
If the minimal perimeter condition is imposed, 

then =60o. 
For the parabolic channel, the hydraulically 

optimal cross-section condition is obtained by 
determining the minimum of function (12), 
considering A=const., which is reduced to calculate 
the minimum of function (, m). For this purpose, 
the values (, m) were calculated using Eqs. 13-15 
for 80 values of  and 340 values of m using a 
computer program. 

The minimum value (, m) for a given degree  
of the generic parabola corresponds to the reverse 
optimal side slope mo, of which the values are 
presented in Table 2 and represent the condition of 
hydraulically optimal parabolic cross-section. 

The minimal value (, m) for a given slope 1/m 
also corresponds to o being the optimal degree of a 
generic parabola. The optimal value o is listed in 
Table 3 and represent the hydraulically optimal 
parabolic cross-section condition for a given side 
slope. 

 
Table 2: Optimal value mo for various  for parabolic 

channels 
 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

mo 0.851 0.521 0.517 0.425 0.356 0.307 0.272 
 5.0 6.0 7.0 8.0 9.0 10.0  

mo 0.241 0.198 0.167 0.145 0.128 0.114  
 

Table 3: Optimal value o for various m for parabolic 
channels 

m 0.2 0.3 0.4 0.50 0.60 0.70 0.80 0.90 1.00 
o 5.5 4.0 3.1 2.6 2.2 1.9 1.7 1.4 1.3 

 

For the semi-elliptic channel, the hydraulically 
optimal section condition is obtained by considering 
A=const. and determining the minimum of function 
(21) rewritten under general form: 

 

𝑃𝑢 =
√π

2
(1.5

φ+2

√φ
− √2) √𝐴 ,                  (36) 

 
The following is obtained: 
 

φo = 2 ,                    (37) 

 
Condition (37) leads to the limit case when the 

semi-ellipse tends to a semi-circle. 

2.3. Mathematical model 

Expressing water velocity V using Chézy’s 
formula (38) and adopting the Pavlovski’s formula 
(39) for the hydraulic resistance coefficient C yields 
the well-known Q discharge equation (40) (Chow, 
1973; Chaudhry, 1993; French, 1994; Subramanya, 
1998): 
 

𝑉 = 𝐶√𝑅𝑖                   (38) 

𝐶 =
1

𝑛
𝑅𝑦                                     (39) 

𝑄 = 𝑉𝐴 =
1

𝑛
𝐴𝑅𝑦+0.5𝑙0.5                  (40) 

 

where, Q is the volumetric discharge; n is the 
Manning’s roughness coefficient; A is the cross-
sectional area; R is the hydraulic radius; i is the 
channel bottom slope; and y is an exponent in 
Pavlovski’s formula, calculated with the following 
equation: 

 

𝑦 = 2.5 √𝑛 − 0.13 − 0.75 √𝑅(√𝑛 − 0.10)                (41) 
 

Eq. 41 is valid for R between 0.1 and 0.3 and for n 
between 0.011 and 0.040. 

Substituting the A and R expressions depending 
on h (Table 1) in Eq. (40), the general equation for 
hydraulic computation of simple cross-section 
channels with steady state uniform flow is obtained: 

 

𝑄 =
1

𝑛
  

ψ𝑦   +1.5

𝑓𝑦   +0.5   ℎ𝑦   +2.5  𝑖0.5                  (42) 

 

If the water velocity V obtained after design is not 
enclosed between admissible limits indicated in the 
literature (Chow, 1973), such as minimum 
permissible velocity Vm, that avoids the deposition of 
sediment and suspensions, and maximum 
permissible velocity VM, that are safe against erosion, 
the channel bottom slope i is increased or decreased 
according to Eq. 43 obtained from the Chézy’s 
formula (38): 

 

𝑖 =
𝑛2 𝑉m(M)

2

𝑅2𝑦   +1   ,                   (43) 
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and the water depth h is determined with the 
following equation: 

 

ℎ =
1

ψ0.5 √
𝑄

𝑉m(M)
                   (44) 

 

The design of a channel with a given shape 
requires determination of the variables h, B and V 
when the elements Q, i, n and parameters  and p or 
m (parabolic section),  (semi-elliptic or semi-
circular section), m and  (trapezoidal section), m 
(triangular section), or  (rectangular section) are 
known. This can be easily performed applying the 
iteration method. In the case of the operation 
checking problem, the geometrical elements B, h, i, n, 
m and  are given and the hydraulic elements Q and 
V are computed. 

Taking into account the calculation formulas 
presented, an algorithm to solve the outstanding 
problems of the hydraulic computation of simple 
cross-section (linear and curve) open channels with 
steady state uniform flow was developed. On the 
basis of this algorithm the computer program 
CANDES1 (Sarbu and Kalmar, 2000) was elaborated 
in FORTRAN programming language for PC 
microsystems. 

3. Compound channels 

3.1. Geometrical elements of the channels with 
flat sides and a cylindrical bottom 

The channel with flat sides and a cylindrical 
bottom (round-bottomed triangle) is a form usually 
created by excavation with shovels. Taking into 
account the notations in Fig. 4 and the tangency 
condition of trapezium sides to the circle arch, the 
cross-section elements can be deduced: 

 
𝑚 = ctgθ                     (45) 
𝑏 = 2𝑟 sinθ = 𝑓1(𝑚)𝑟                  (46) 

ℎ = 2𝑟 sin2 θ

2
= 𝑓2(𝑚)𝑟                  (47) 

𝐻 − ℎ = α 𝑟                   (48) 

 

 
Fig. 4: Channel with flat sides and a cylindrical bottom 

 

𝐻 =
α+𝑓2(𝑚)

𝑓2(𝑚)
ℎ = [α + 𝑓2(𝑚)] 𝑟                 (49) 

𝐵 = 𝑏 + 2𝑚(𝐻 − ℎ) = [2𝑚α + 𝑓1(𝑚)] 𝑟                (50) 

 
in which: 
 

𝑓1(𝑚) =
4

𝑚′
                   (51) 

𝑚′ = 2√1 + 𝑚2                                   (52) 

𝑓2(𝑚) = 1 −
2𝑚

𝑚′
                   (53) 

α =
𝐻

𝑟
− 𝑓2(𝑚) = 𝑓2(𝑚) (

𝐻

ℎ
− 1)                 (54) 

 

where,  is the side angle; m is the reciprocal of the 
side slope; r is the circle arch radius; H is the water 
depth; B is the section width at the water free-
surface. 

Using Eqs. 49 and 50, the following is obtained: 
 

β =
𝐵

𝐻
=

2𝑚α+𝑓1(𝑚)

α+𝑓2(𝑚)
                   (55) 

α =
𝑓1(𝑚)−𝑓2(𝑚) β

β−2𝑚
                   (56) 

 
According to Eq. 54, if h=H (circular channel) and 

h=0 (trapezoidal channel), then  has the value 0 
and , respectively. 

Introducing restrictions =0 and = in Eq. 55, 
the problem’s compatibility condition is obtained: 

 

2𝑚 < β <
4

𝑚′−2𝑚
                   (57) 

 
Eq. 57 expresses the domain in which the link 

between the geometric and hydraulic characteristics 
can be analysed. 

For the wetted perimeter Pu, area A and hydraulic 
radius R, the following expressions are derived: 

 
𝑃𝑢 = 2√1 + 𝑚2(𝐻 − ℎ) + 2 θ 𝑟 = [𝑚′α + 2𝑓3(𝑚)] 𝑟       (58) 

𝐴 = [𝑏 + 𝑚(𝐻 − ℎ)] (𝐻 − ℎ) +
2 θ−sin 2 θ

2
𝑟2 = [𝑚α2 +

𝑓1(𝑚)α + 𝑓4(𝑚)] 𝑟2                    (59) 

𝑅 =
𝐴

𝑃𝑢
=

𝑚α2+𝑓1(𝑚)α+𝑓4(𝑚)

𝑚′α+2𝑓3(𝑚)
  𝑟                 (60) 

 
in which: 
 

𝑓3(𝑚) = arctg
1

𝑚
                   (61) 

𝑓4(𝑚) = 𝑓3(𝑚) −
2𝑚

𝑚′
                  (62) 

 
Using the following notations: 
 
φ = 𝐻/𝑟 = α + 𝑓2(𝑚)                  (63) 
τ = 𝐵/𝑟 = 2𝑚α + 𝑓1(𝑚)                  (64) 

ψ = √𝐴/𝑟 = √𝑚α2 + 𝑓1(𝑚)α + 𝑓4(𝑚)                (65) 
𝑓 = 𝑃𝑢/𝑟 = 𝑚′α + 2𝑓3(𝑚)                  (66) 

 
every dimensional geometric element is a function of 
only one dimensional element and two other 
dimensionless parameters m and , according to 
Table 4. 

3.2. Mathematical model 

Substituting the expression for geometrical 
elements A and R depending on H (Table 4) in the 
discharge Eq. 40, the general formula is obtained for 
the hydraulic computation of channels with flat sides 
and a cylindrical bottom in steady state uniform 
flow: 

 

𝑄 =
1

𝑛
 

ψ2𝑦+3

φ𝑦+2.5𝑓𝑦+0.5  𝐻𝑦+2.5𝑖0.5                  (67) 

 



Ioan Sarbu, Anton Iosif/International Journal of Advanced and Applied Sciences, 5(1) 2018, Pages: 1-7 

6 
 

The expression of radius r obtained in Eq. 59 is 
substituted in Eq. 58 to yield the following notation: 

 

λ =
𝑓

ψ
=

𝑚′α+2𝑓3(𝑚)

√𝑚α2+𝑓1(𝑚)α+𝑓4(𝑚)
                  (68) 

 
Table 4: Geometrical element expression of the cross-

section 

Elem. 
A function of: 

r H B A Pu R 

r r 
1

φ
𝐻 

1

τ
𝐵 

1

ψ2
√𝐴 

1

𝑓
𝑃𝑢 

𝑓

ψ2
𝑅 

H φ 𝑟 H 
φ

τ
𝐵 

φ

ψ
√𝐴 

φ

𝑓
𝑃𝑢 

φ 𝑓

ψ2
𝑅 

B τ 𝑟 
τ

φ
𝐻 B 

τ

ψ
√𝐴 

τ

𝑓
𝑃𝑢 

τ 𝑓

ψ2
𝑅 

A ψ2𝑟2 
ψ2

φ2
𝐻2 

ψ2

τ2
𝐵2 A 

ψ2

𝑓2
𝑃𝑢

2 
𝑓2

ψ2
𝑅2 

Pu 𝑓 𝑟 
φ

𝑓
𝐻 

1

τ
𝐵 

1

ψ
√𝐴 Pu 

𝑓2

ψ2
𝑅 

R 
ψ2

𝑓
𝑟 

ψ2

φ 𝑓
𝐻 

ψ2

τ 𝑓
𝐵 

ψ0,5

𝑓
√𝐴 

ψ2

𝑓2
𝑃𝑢 R 

 

Thus, expression (58) of the wetted perimeter 
becomes: 

 

𝑃𝑢 = λ√𝐴                   (69) 
 

In the case of a hydraulically optimal section that 
corresponds to the minimal wetted perimeter for the 
same A, n and i values, the dimensionless parameter 
 becomes minimal and =o is obtained by 
determination of the (68) function minimum from 
condition /=0: 

 

αo =
𝑓1(𝑚) 𝑓3(𝑚)−𝑚′𝑓4(𝑚)

1

2
𝑚′𝑓1(𝑚)−2𝑚𝑓3(𝑚)

=
2𝑚

𝑚′
=

𝑚

√1+𝑚2
                    (70) 

 

Substituting Eq. 70 in Eq. 55 results in the 
condition of the hydraulically optimal section for a 
given side slope: 

 

βo = 𝑚′ = 2√1 + 𝑚2                  (71) 
 

The values of optimal relative width o 
determined in Eq. 71 for different values m are 
presented in Table 5. 

 

Table 5: Values of optimal relative width o 
m 0 0.25 0.50 0.75 1.00 1.25 
o 2.00 2.00 2.24 2.50 2.83 3.20 
m 1.50 2.00 2.50 3.00 4.00  
o 3.61 4.47 5.39 6.32 8.25  

 

If the resulting water velocity V after design 
process is not between admissible limits Vm and VM, 
then the channel bottom slope i is increased or 
decreased according to Eq. 43, and the water depth H 
is determined by the equation: 

 

𝐻 =
φ

ψ
 √

𝑄

𝑉m(M)
                   (72) 

 

The mathematical model described was 
implemented in the computer program CANDES2 
(Sarbu and Kalmar, 2000) written in FORTRAN 
programming language for PC microsystems. 

4. Numerical applications 

To enhance the advantage of the CANDES1 
program, the design of a channel was performed 
considering different cross-sections (trapezoidal, 
rectangular, triangular, parabolic, semi-elliptic, and 
semi-circular) and using the following data: Q=5 
m3/s, i=0.0006, n=0.014, Vm=0.7 m/s and VM=4 m/s. 
The numerical results of the computations are 
summarised in Table 6. The design of a hydraulically 
optimal section of a channel with flat sides and a 
cylindrical bottom was obtained using CANDES2 
program for Q=10.0 m3/s, i=0.0006, n=0.0225, m=1, 
Vm=0.50 m/s, VM=1.50 m/s and =0.001 m. The 
following numerical results are obtained: o=2.828, 
r=2.373 m, h=0.695 m, b=3.355 m, H=2.373 m, 
B=6.711 m, V=1.126 m/s and i=0.0006. 

 

Table 6: Characteristic elements provided by the CANDES1 program 

No. 
Computed 
elements 

Cross-section shapes 
Trapezoidal Rectangular Triangular Parabolic Semi-elliptic Semi-circular 

=0, =0.83, 
m = 2 

 = 0,  = 2, 
m = 0 

 = 0, =0, 
m = 1 

 = 5, =0, 
m = 0.241 

 = 0,  = 0, 
 = 1.6 

 = 0,  = 0, 
 = 2 

1 h [m] 1.405 1.359 1.922 1.320 1.668 1.488 
2 B [m] 3.976 2.718 3.844 3.181 2.668 2.976 
3 A [m2] 3.612 3.694 3.694 3.500 3.493 3.477 
4 Pu [m] 5.140 5.436 5.436 4.750 4.728 4.673 
5 V [m/s] 1.389 1.359 1.359 1.433 1.436 1.442 
6 i [%] 0.060 0.060 0.060 0.060 0.060 0.060 
7 b [m] 1.166 2.718     
8 p [m-4]    0.130   

 

According to the simplicity and accuracy of the 
proposed models, the lined channel design using 
explicit relation probably can be of interest not only 
practical projects but also for future studies while 
more channel sections and alternative algorithms 
may be considered. 

5. Conclusion 

A unifying computation model is derived for 
channel cross-sections with simple geometries, as 

well as a model for compound cross-sections. These 
models have been coded into computer programs for 
easy utilisation by practicing engineers. 

The proposed mathematical models have a higher 
degree of generality, which allows for performing a 
more precise unitary hydraulic computation for the 
channels with different cross-section shapes and to 
establish their hydraulically optimal profile. The 
optimal hydraulic computation of these channels can 
be typically applied for the precast conveyer troughs 



Ioan Sarbu, Anton Iosif/International Journal of Advanced and Applied Sciences, 5(1) 2018, Pages: 1-7 

7 
 

with different shapes within hydro-amelioration 
systems. 

The general hydraulic calculation of channels 
with flat sides and a cylindrical bottom is based on 
Eq. 67. This calculation is performed in a manner 
analogous to the hydraulically optimal cross-section 
calculation developed in this study. The difference is 
that the most adequate relations between the 
geometrical elements m, , H, B, r, A and R are 
selected. 

Some aspects concerning the hydraulic 
computation for random degree parabolic channels 
can be applied in the case of symmetrical river beds 
(Sarbu and Retezan, 1985). 

The developed computer programs allow for 
performing an efficient computation in a manner 
that is more precise than the traditional methods, 
when different constructive variants are compared. 
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